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Scientific context

This position is a part of the ANR project Exa-MA (Methods and Algorithms for Exascale)
dealing with high-performance computing methods and its adaptation to the forthcoming
so-called exascale hardware. This combined internship and PhD proposal concerns UQ (Un-
certainty Quantification) developments on turbulence closure modeling for CFD (Computa-
tional Fluid Dynamics). The Commissariat à l’énergie atomique (CEA) will bring expertise on
applied statistics and turbulence closure modeling whereas l’École Nationale de la Statistique
et de l’Analyse de l’Information (ENSAI) will bring sound mathematical tools for uncertainty
quantification.

The intern-then-PhD student will be mainly based in CEA Saclay research center, in the
outskirts of Paris, with several meetings in the ENSAI Campus near Rennes. It will be
supervised by Clément Gauchy and Pierre-Emmanuel Angeli in CEA, and Sébastien Da
Veiga in ENSAI who will be the PhD director.

Description and objectives

Turbulence closure modeling and the peculiar role of the Reynolds stress
tensor

Turbulence effects arise in many engineering applications with high level of performance
and safety standards. Accurate predictions of turbulent flows are of vital importance es-
pecially for the nuclear industry. The dynamic of fluid flows is governed by the famous
Navier-Stokes (NS) equations. In the context of incompressible incompressible Newtonian
flows of constant property, the NS equations writes:
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where ui, p, xi, t are respectively the flow velocity, the pressure field, the spatial coordinate
and the time. The Reynolds number Re measures the relative importance of inertia to vis-
cous forces. The higher the Reynolds number, the more chaotic are the solutions of the NS
equations. The flow velocity field then exhibits strong fluctuations that are characteristic of
the turbulent regime and drived by the nonlinear convection terms Buiuj{Bxj .

Direct Numerical Simulations (DNS) requires a very fine meshing to provide an admis-
sible numerical of the solution of the NS equations, implying a intractable computational
time with respect to industrial constraints. The Reynolds-Averaged Navier-Stokes (RANS)
equations provides faster numerical computations while conserving a good representation
of the turbulent flows. It is based on the decomposition of the flow velocity field as by a
mean component and a fluctuating component:

ui “ xuiy ` u1
i

with the following assumption that Bxuiy{Bt “ 0. Applying the mean operator and by incor-
porating this decomposition into the NS equations allows us to write the following equa-
tions:
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This formulation is called the RANS formulation of the NS equations. The equations become
stationary but with a new source term, the Reynolds stress tensor (RST) τij “ ´xu1

iu
1
jy.

Turbulence closure modeling is dedicated to finding a model for the RST that can be based
on both physical arguments and experimental measurements. The determination of the RST
via turbulence closure modeling is critical for solving the RANS equations. Moreover, due
to the importance of the simulation of turbulence effects for industrial applications, research
on uncertainty quantification methodologies on the RST have been heavily developed in the
recent years [8, 7].

Objectives

The main objective of the PhD is to develop an uncertainty quantification framework for the
RST modeling. Here are some potential and non-exhaustive research axes:

• Gaussian process regression is oftenly used in uncertainty quantification due to its
ability to provide both a prediction and an uncertainty on its prediction. Also known
as kriging, it is also used in spatial stastistics. Gaussian process regression extensions
for tensor prediction has already been studied for the determination of stress tensors
of hyperelastic materials [1, 4]. However, Reynold stress tensors form a spatial tensor
field and the spatial correlation has to be taken into account while being computa-
tionally tractable. Specific algorithms for training and sampling the Gaussian process
posterior distribution will be derived using advanced tools coming from the spatial
statistics literature (e.g. Vecchia approximation [6], Fast Fourier transform,...).

• Uncertainty quantification will be performed on the Reynold stress tensor spatial field.
The main challenge will consists in developing a sound mathematical framework to
statistically describe the RST field. While central and dispersion statistics such as mean
and variance are straightforward for a tensor spatial field, risk statistics such as quan-
tile or superquantile are not easily defined for random variable of dimension more
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than one. A new notion of multivariate quantile based on Optimal Transport (OT) has
been recently introduced [5] along with recent developments of efficient estimation
algorithms [3, 2].

Wished profile, salary, duration

The ideal candidate should have confirmed skills in probability theory and statistics, as well
as some background knowledge in fluid dynamics and/or applied physics.

The internship before the start of PhD will be about 6 months duration, starting any time
after March 2024, with a monthly salary between 700€ and 1300€ depending on the candi-
date’s profile, as well as a housing assistance of about 200€.

The PhD will start by any time between September and December 2024. It is a three
years contract with a gross annual salary around 28.5k€ (independent of the candidate’s
profile).

For both the internship and the PhD, there is an financial assistance of 75% of the pub-
lic transport subscription fees.

CEA offers to their employees a free bus shuttle service from a variety of places in
Île-de-France region to reach the CEA Saclay research center more easily. Ask us to have
more details on the different shuttle lines and timeschedules!

If you feel interested by the proposal, please get in touch by e-mail with C. Gauchy, P-E.
Angeli and S. Da Veiga.
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