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Benchopt presentation

Optimization has a central role in machine learning (ML). Though theory has come handy to assert the
effectiveness (or ineffectiveness) of many algorithms, practical considerations are often not taken as seriously
by the ML community.

Choosing the best algorithm to solve an optimization problem often depends on

• The data scale, conditionning

• The objective parameters regularisation

• The implementation complexity, language

An impartial selection requires a time-consuming benchmark!

The goal of the package benchopt1 is to make this step as easy as possible, and allow practitioners to
evaluate a wide diversity of algorithm on their own dataset.

Internship description

Within this project, the goal of the intern will be to improve the benchopt package and website in general.
On the mid/long-term, this would lead to a publication in a major conference in ML, once the package has
become strong enough, and could cover a wide diversity of optimization problems.

A precise task for the intern would be to start providing a benchmark for the Minimax Concave Penalty
(MCP) regression problem [10].

Let us remind the definition of the MCP estimator. First, for some parameters γ > 1 and λ ≥ 0, we define
the 1D penalty for any t ∈ R as follows:

pMCP
λ,γ (t) =

{
λ|t| − t2

2γ , if |t| ≤ γλ,
1
2γλ

2, if |t| > γλ .
(1)

1https://github.com/benchopt/benchOpt
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The proximity operator2 of pλ,γ for parameters λ > 0 and γ > 1 is defined as follows [2, Sec. 2.1]:

proxMCP
λ,γ (t) =

{
ST(t,λ)

1− 1
γ

if |t| ≤ γλ
t if |t| > γλ ,

(2)

where ST(t, λ) = sign(t) · (|t| − λ)+ for any t ∈ R and λ ≥ 0, and similarly HT(t, λ) = t · 1{|t|>λ}. The
proximal operator defined in Eq.(2) is also known as the Firm Shrinkage [5]. The MCP estimator is then
given by:

β̂(λ,γ)(y) , argmin
β∈Rp

1

2n
‖y −Xβ‖22 +

p∑
j=1

pMCP
λ,γ (βj) , (3)

where X ∈ Rn×p is the design matrix and y ∈ Rn the observed signal.
Illustration of the penalty and proximal operator are provided in Fig.1 for some parameters, including

limiting behavior.
The optimization solvers of interest that will be investigated are:

• Coordinate descent [9, 2]

• Proximal gradient descent [1]

• Difference of convex (DC) programming [6]

• Proximal bundle methods [3]

More recent algorithms could be investigated and added to the package, see for instance [8] or [7], or
variants using an interesting formulation of the MCP penalty as a bi-convex program, see [4]. Upon success,
a new algorithm to handle MCP could also then be considered.

Skills required

• Python

• Git

• R (not mandatory, but could come handy)

Supervision Team

• Joseph Salmon: joseph.salmon@umontpellier.fr

• Cássio Fraga Dantas.: cassiofragadantas@gmail.com

Salary

Gross monthly salary: approx 550 Euros.
This work will be funded by the ANR CaMeLOt ANR-20-CHIA-0001-01.

Duration

The internship could last from 4 to 6 months.

Location

The internship will be located in Montpellier (Univ. Montpellier), within the mathematics department
(IMAG).

2For a function p this operator is defined by prox(x) = argminx′ p(x′) + ‖x− x′‖2 /2.
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(c) γ → 1+: recovers HT(·, λ)

Figure 1: Penalty (bottom) and associated proximal operator (top) for a fixed λ, with γ → +∞ (a), for
γ = 2.3 (b) and γ → 1+ (c).
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