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Hyperparameter calibration for variable selection

Learning methods in a context where the number of features can be greater than the number of observations
have been popularized by genomics applications. They are common for bio-statistics inference, where n the
number of patients is limited, while p the number of features available are numerous (e.g., clinical or genetic
features). This field has fostered the spread of regularized least-squares with sparsity inducing penalties.’
More recently, dictionary learning [8] or statistical inference (e.g., to provide faithful confidence intervals
[13]) have relied on multiple regressors whose tuning time has become prohibitive. Yet, such regularized
methods are sensitive to such tuning parameters, trading-off data fitting and sparsity. Improving tuning
procedures is a major concern shared by most practitioners, might it be neuro-imaging or bio-statistics.
For practitioners, tuning is a hurdle, and they usually resort to default settings from packaged methods:
time constraints discourage them from investigating further settings. Hence, it is crucial to provide high
dimensional regression methods that have automatic tuning properties.

The standard tuning procedure in ML is cross-validation: 1) a grid of tuning parameters is created;
2) the dataset is divided into equal sized subsamples (folds), and alternatively each fold is left aside as a
validation set, while training (for each parameter) is performed on the other folds. 3) A score aggregates the
validation feedback and the parameter achieving the best one is selected. Though popular in practice, cross-
validation has important drawbacks: 1) theoretical efficiency analysis in high dimension is scarce [1]; 2)
computational inefficiency: for 100 values of a 1D parameter, 10-fold cross-validation requires evaluating
1000 estimators, and is unpractical for more than 3 parameters.

Tuning procedures satisfying jointly statistical and computational efficiency are so far still missing, despite
recent advances [5, 11]. In a preliminary work with A. Gramfort and colleagues, we have shown that
bi-level optimization techniques could help to handle many hyper-parameters to be tuned for Lasso-like
methods [3]. Leveraging automatic differentiation and the underlying convex structure of the regressors,
we have managed to efficiently tune p parameters, i.e., one per feature. Early results (see sparse-ho) have
been obtained for standard left-out strategies, but vanilla cross-validation is not yet handled. A deeper
investigation is required to generalize our strategy to more diverse learning frameworks.

Internship description

Let us remind the definition of the Minimax Concave Penalty (MCP) estimator. First, for some parameters
v > 1and A > 0, we define the 1D penalty for any ¢ € R as follows:

ISparsity is key as it allows practitioners to interpret the influence of each feature on their models.


https://github.com/QB3/sparse-ho
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where ST(t,\) = sign(t) - (|t| — A); for any t € R and A > 0, and similarly HT(t,\) = ¢ - Tf>;. The
proximal operator defined in Eq.(2) is also known as the Firm Shrinkage [6]. The MCP estimator is then
given by:
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where X € R"*? is the design matrix and y € R™ the observed signal.

Ilustration of the penalty and proximal operator are provided in Fig.1 for some parameters, including
limiting behavior.

The optimization solvers of interest that will be investigated are the following (the first one could be
enough for a first step):

* Coordinate descent [12, 4]
* Proximal gradient descent [2]

* Difference of convex (DC) programming [7]

An efficient implementation allowing to select the parameter efficiently (say using cross-validation) will
be of high interest. Early attempts using clever grid search [9] or optimization [3] will be evaluated in terms
of time and statistical performance.

Alternative measures of performance for the tuning step might also be investigated, including randomized
procedures. Of interest could be variants where the hyperparameter is optimized using a random train/test
split (tuning with the test part) for different replicas. Then, a stability selection [10] procedure could help
performing variable selection.

Skills required
* Python
. Git

* R (not mandatory, but could come handy)

Supervision Team
e Joseph Salmon: joseph.salmon@umontpellier.fr
e Céssio Fraga Dantas.: cassiofragadantas@gmail.com

e Emmanuel Soubies: Emmanuel.Soubies@irit.fr

2For a function p this operator is defined by prox(z) = arg min,, p(z’) + ||z — '||* /2.
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Figure 1: Penalty (bottom) and associated proximal operator (top) for a fixed A\, with v — +oo (a), for

~=2.3(b) and v — 1+ (c).

Salary

Gross monthly salary: approx 550 Euros.

This work will be funded by the ANR CaMeLOt ANR-20-CHIA-0001-01.

Duration

The internship could last from 4 to 6 months.

Location

The internship will be located in Montpellier (Univ.

(IMAG).
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