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Sparse regression and high dimensional statistics

High dimensional statistics has seen a tremendous amount of work since the 90’s, mostly govern by the
genomics applications. Following the Lasso [12, 4] introduction, sparsity enforcing penalties have played
a major role, especially the convex one (the `1 case). Yet, the Lasso suffers from early detections on the
path: even for large regularization parameters, wrong detections might already pop-up [11]. Technically,
the results by these authors were proved using Approximate Message Passing (AMP) theory [5].

Internship description

For this project, the goal of the intern will be to adapt the AMP methodology for the MCP penalty [14].
Let us remind the definition of the Minimax Concave Penalty (MCP) estimator. First, for some parameter

γ > 1 and λ ≥ 0, and for any t ∈ R we define the 1D penalty as follows:

pMCP
λ,γ (t) =

{
λ|t| − t2

2γ , if |t| ≤ γλ,
1
2γλ

2, if |t| > γλ .
(1)

The proximity operator1 of pλ,γ for parameters λ > 0 and γ > 1 is defined as follow (see [3, Sec. 2.1]):

proxMCP
λ,γ (t) =

{
ST(t,λ)

1− 1
γ

if |t| ≤ γλ
t if |t| > γλ ,

(2)

where ST(t, λ) = sign(t) · (|t| − λ)+ for any t ∈ R and λ ≥ 0 (resp. HT(t, λ) = t · 1{|t|>λ}), corresponds to
the limiting case when γ → ∞ (resp. when γ → 1). The proximal operator defined in Eq.(2) is also known
as the Firm Shrinkage [7]. For λ ∈ R and γ > 1 the MCP estimator is then defined by:

β̂(λ,γ)(y) , argmin
β∈Rp

1

2n
‖y −Xβ‖22 +

p∑
j=1

pMCP
λ,γ (|βj |) , (3)

where X ∈ Rn×p is the design matrix and y ∈ Rn the observed signal.
Illustration of the penalty and proximal operator are provided in Fig.1 for some parameters, including

limiting behavior.

1For a function p this operator is defined by prox(x) = argminx′ p(x′) + ‖x− x′‖2 /2.
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The aim of the internship is to show that using MCP will reduce the (possibly many) false positive
detections due to the contraction bias the Lasso is suffering from, see [11]. The choice of MCP is due to
appealing optimization properties proved for this penalty (in terms of local minima shared with `0 penalty,
unfortunately leading to NP hard problems), see in particular [10].

The theory relies on recent developments of techniques for the analyses of high-dimensional statistical
learning algorithms based on the Mean Field Asymptotics, like e.g., the asymptotic theory for Approximate
Message Passing (AMP) Algorithms (see [9] , [6], [2]). Some modifications/extensions will be required to
deal with the non-convex MCP penalty.

In parallel to the theoretical study, a thorough numerical investigation is expected. Hence, the intern
would provide an adaptation for the MCP case of the experiments performed in the paper [11] but for this
non-convex regularization. Variations due to algorithmic difficulties (e.g., local minima) might be of interest
and connected to the work of another intern on computational efficiency. The list of possible solvers includes
for instance:

• Coordinate descent [13, 3]

• Proximal gradient descent [1]

• Difference of convex (DC) programming [8]

• etc.

Skills required

• Python

• Git

• R (not mandatory, but could come handy)

Supervision Team

• Joseph Salmon: joseph.salmon@umontpellier.fr

• Małgorzata Bogdan: Malgorzata.Bogdan@uwr.edu.pl

• Nicolas Meyer: nicolas.meyer@umontpellier.fr

Salary

Gross monthly salary: approx 550 Euros.
This work will be funded by the ANR CaMeLOt ANR-20-CHIA-0001-01.

Duration

The internship could last from 4 to 6 months.

Location

The internship will be located in Montpellier (Univ. Montpellier), inside the mathematics department
(IMAG).
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Figure 1: Penalty (bottom) and associated proximal operator (top) for a fixed λ, with γ → +∞ in (a), for
γ = 2.3 in (b) and γ → 1+ in (c).
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